Bajaj Auto Limited Chakan Plant

Company Profile

Manufacturing Locations

Chakan Plant

Company Vision, Mission & TPM Journey

Chakan Plant

Specific Energy Consumption

Absolute Energy consumption & Saving

Year	Elect. Saving (Lacs Kwh)	Thermal (Fuel) saving M Kcal	Elect. Consumption Lacs Kwh	Thermal (Fuel) Consumption M Kcal	Elect. Saving %	Thermal Saving %	Actual vehicle	Equivalent vehicles
2019-20	9.64	142	159.1	2361	6.00	6	849960	2062775
2020-21	6.22	49	165.2	2410	3.70	2.0	846346	2309722
2021-22	4.7	71	184.5	3895	2.54	1.82	852669	2434154

ABS painting process started in house from Jan 2021

Pulsar- 150 (First model in Chakan plant) Considered as base mode for equivalent vehicles calculations

Specific energy consumption & saving

Enormy	lloit		Target		
Energy	onit	2019-20	2020-21	2021-2022	2022-2023
Electricity	KWH/Veh.	8.51	07.90	07.79	7.40
PNG	Kg / veh	0.163	0.160	0.158	0.155
Water	m³ / veh	0.06	0.05	0.04	0.035

% Specific energy consumption Reduction

S.no	Energy	In Last 2 Years (up to March 21)	In last year (2021-2022)
1	Electrical (Kwh/Veh)	12%	1.4%
2	Fuel (LPG) (Kg/Veh)	08%	2 %
3	Water (Cu.m /Veh)	31%	20.0%

Energy Consumption Trend

Plant level SEC trend

Electrical Power Consumption

PNG Consumption

Water Consumption

Process wise energy consumption

Chakan Plant

Energy Consumption-Benchmark & Methodology

Specific Energy Consumption-Benchmark

Energy conservation methodology

Sr.	Energy	BAL Chakan	Nearest competitor 1 (Hero MotoCorp)	Nearest competitor 2- (Honda Motorcycle)	Global
1	Electrical (Kwh/Veh)	7.79	27.5	28.88	NA
2	Fuel (CNG) – Kcal/ veh.	1970	9566	10222	NA
3	Water (Cub.Mtr/Veh.)	0.04 (Water Positive)	NA	NA	NA

- Specific Energy is calculated per equivalent vehicle.
 Considering our Pulsar 150 as base model.
- We have started process wise energy consumption monitoring from 2022-2023
- Target Min 5 % Reduction in specific energy consumption wrt last year

To achieve specific Electrical energy consumption per vehicle 7.40 KWH in FY 22-23

Chakan Plant

Major ENCON projects – FY 22-23

Major ENCON (Electrical) projects – FY 22-23

S.No.	Title of Project	Before (KW)	After (KW)	Annual Electrical Saving, Million kWh	Annual Electrical Cost Saving Rs Million	Investment (Rs million)	Payback months
1	Cooling System – Use of heat resistive sheets	07	01	0.129	1.02	1.6	19
2	Process Change - Crank case washing process change. Use of one washing machine instead of 2 machines.	59	49	0.072	0.624	0.3	6
3	Use of renewable energy Source - Use of heat pumps for cylinder head & crank case washing machines. 4 machines	76	53	0.169	1.473	1.2	10
4	Advanced tech Use of DC brushless motors.	12.4	9.5	0.018	0.156	0.2	14
	Total			0.92	8.0	12.3	17

Target - Fix Load reduction – 0.29 Millan KWH (43 KWH / Hr.)

Target - Variable Load reduction – 0.63 Millan KWH (83 kwh/Hr.)

Major ENCON (Thermal) projects – FY 22-23

S.No.	Title of Project	Before CNG in KG	After	Annual Thermal Saving, Million Kcal	Annual Thermal Cost Saving Rs Million	Investment (Rs million)	Payback months
1	Canteen gas Buner to convert to induction heating	10 Kg/ Day	52 KWH/ Day	2.3	0.228	0.1	5
2	Use of Low temperature Chemicals for Paint shop pretreatment process	66.7 Kg/Day	22.7 Kg / Day	101	1.056	1.5	18
8	Paint sludge to be sent for reprocess instead of burning in in inclinator.	40 Kg/ Day	21Kg/ Day	43.89	0.52	0.8	16
	Total			197	1.8	2.3	NA

Summary of energy saving projects in last 3 years

Year	No of energy saving projects	Investments (INR Million)	Electrical saving (Million KWH)	Thermal saving (Million Kcal)	Saving (INR Million)	Impact on SEC (Electrical Kwh /Veh.,
2019-2020	73	3.166	0.964	56.80	7.23	0.44
2020-2021	46	2.7	0.365	85.90	2.95	0.60
2021-2022	58	4.25	0.470	98.50	4.089	1.1

Examples - Wastage Elimination (Visible Loss elimination)

Timer for auto switch off Hydraulic pump motor when machine is idle

Auto control with photo electric sensors for lighting control

Ventilation system with reduced load of 20 % during break times

Sr.	Loss area	Actions for wastage reduction	Activity	Saving (Yr.)	HD (Nos.)
1	Lighting	Auto control of conveyor tube lights	Interlocked tube light supply with conveyor ON condition	0.1 Lkwh	12
2	Lighting	Light intensity-based operation of the shop & streetlights	Provided photo electric sensors to avoid working of lights in daytime	0.37 Lkwh	12
3	Comfort cooling (Fan)	Switch off fans after break / recesses times	Provided preprogrammed timers to switch off fans after break time	0.01 Lkwh	900
4	Idle running of Hydraulic Pump	Auto stop for power pack pumps during machine idle condition	Timer based interlocking with auto cycle for hydraulic pumps in machines.	0.02 L Kwh	107

Examples- Consumption Reduction – Blower & Pumps

Area	Before	After	Saving (Yr.)	Inves. (Rs. Lacs)	HD (No)
Paint shop	AC Induction motor blower. Indirect drive - V belt Blower- 15000 CFM isingle motor 15 KW 6226 Kwh /month	 BLDC motor blower. BLDC motor has 90% efficiency. lightweight fan , Improved fins 4080 Kwh /month 	0.26 L Kwh	4.5	2
EV & Export shops	Air circulators at shop floor	Lower ambient at shop floor. Heat resistive sheets at roof	0.35 L Kwh/ Yr	Rs. 12 lacs	
Paint shop	 Hot water circulation pump with gland cooling water 25 HP pump Gland cooling pump - 5HP 	 Hot water circulation pump without gland cooling water Pump with mechanical seal. Cooling water circulation pump eliminated. 	0.18 L Kwh	3.5	6

Energy Saving Projects in last 3 years

Examples- Consumption Reduction – Lighting

Area	Before	After	Saving (Yr.)	Investment (Rs. Lacs)	HD
Conveyors	Conventional tube lights on assembly conveyors . Use of 360 X 80 W Tubes	LED lights on assembly conveyors Use of 360 X 46 W LED Lights	0.59 L Kwh/ Yr.	14.4 Lacs	4 Conveyer
Machine Task Light	Use of 36 W Tube light at 1 Meter Height		0.175 L Kwh/ Yr	0.9 Lacs	3 Shops
Street Lights	•150 Watt CFL lamps •650 Nos. Lamps • Connected Load – 97.5 Kw • Consumption 3.55 L Kwh/Yr	•72 Watts LED lamps- 100 Nos •89 Watts LED lamps- 150 Nos • Connected Load – 3.75 Kw • Consumption -0.648 L kwh/Yr	0.306 L Kwh /Yr	1.55 Lac	All street lights
Shop Lights	•120 watts LED lamps • 750 Nos. Lamps • Connected Load -90 Kw • Consumption- 3.24 L Kwh/Yr.	 •80 watts LED lamps - 750 Nos. Lamps Connected Load – 60 KW •Consumption - 2.16 L KWH/ Year 	1.08 L kwh /Yr	13.5 Lacs	8 shops

Examples- Consumption Reduction- Method Change

Area	Before	After	Saving (Yr.)	Investment (Rs. Lacs)	HD (No)
Machine shop	Electric Heater for Water heating of washing machine Energy consumption 1.02 L Kwh /yr.	Heat Pump for water heating of washing machine Energy consumption 0.61 L Kwh /yr.	0.41 L kwh	7.5	2
Paint shop	 Reciprocating chiller 30 TR Air cooled reciprocating compressor COP of the compressor is low Energy consumption 864 Kwh /Day 	 Scroll chiller 27 TR Water cooled scroll compressor COP of the compressor is high Energy consumption 528 Kwh/Day 	1.2 L kwh	8.5	3
Assembly	 Multiple 30 inch air circulators comfort cooling 350 Watts air circulators 30 Nos - 10.5 KW 	 Single HVLS 24 feet air circulators comfort cooling 1.5 K Watts air circulators 	0.43 L Kwh	3	20
Production shops	 Air supply unit used for comfort cooling Centralized ARP with 100HP motor 	 Spot coolers used for comfort cooling Breeze air spot coolers used With 2 HP blowers 	1.08 L Kwh	16	12

Reduction of Compressed Air Consumption Per Vehicle

Sr No.	Idea	Implementation
1	 Air Leakage data collection through audits from shops Air leakage data through FAD tests. Efficient usage of compressed air Shut off valve during non working hours 	Automatic Shut off Air (when not in use)
2	 providing localized compressors Separation of air headers for Low pressure & High pressure requirement Rerouting & Resizing of compressed air headers Use of Air Boosters for High pressure application Use of Aluminium pipes for air distribution in assembly shops 	Standardization of Air distribution system
3	•Use of Electrical operated tools	DC tools

Examples - Wastage Elimination

Idea	Before	After	Saving	Investment
Fixture Weight Reduction	Stacking tray weight- 7.5 KG Manufacturing by Sand casting	Stacking tray weight- 3.5 KG Manufacturing by Investment casting	120 Ton/Year	08 Lacs
Grating Modification	Paint booth Grating cleaning by burning in oven Total no. of gratings = 208 Cleaning frequency = Weekly	Teflon coated Paint booth Grating cleaning by high pressure water jet - Burning is eliminated	19.68 Tons/Yr	6.8 Lacs
Magnetic resonator	Paint Baking Oven : Low combustion efficiency of burner PNG required for one burner / Hour – 11.5 Kg	Polarized fuel easily attracts the air, improving specific area of contact between air and fuel. It enhances combustion efficiency.Magnetic ResonatorPNG required for one burner / Hour – 11.15 Kg	9.8 Tons/Yr	8 lacs
Thermography Audits	Loss due to Hot air leakage from Ovens	Scheduled Thermography audits & corrective actions – Points identified : 13 Loss : 42451 K Cal /Hr	17.70 Tons / Yr	6 Lacs

Examples - Wastage Elimination through Micro level Analysis

Hidden loss reduction in CNC machines & SPMs

Methodology

Scope identified through micro mapping

S. N	Scope	Equip. / Part	Part/ Accessories	Kaizen Theme	Kaizen Idea	Result	Res.	Target Date	Status
1	Parameter optimization	Boring, Honing ,MTD SPM	Spindle With VFD	Energy Consumption reduction	Spindle Speed Optimization based on Process requirement & Cycle time	Energy Cost Saving for cutting cycle.	RVK	30.07.21	С
2	Operation sequence change	Crank case bush press	Hydraulic motor	Running time optimization	Cycle / operating sequence to changed	Pump running time reduction	RVK	20.01.22	Case Study C
3	Power loss	Makino , VF2,	Chilling Units for oil & coolant	Electrical Energy Consumption Reduction	Chilling Units Piping Coating to avoid heat loss	Energy cost reduction	RVK	25.8.19	С
4	Process change	Crank case leak test	Hydraulic pump	Pump running time reduction	Pump running time reduction by process optimization	Power consumption reduction by 18 KWH / Day	RVK	25.11.21	Case Study C
34	Process Change	Fine boring cylinder block	Coolant unit	Process change (Dry boring)	Wet boring to be to be elimination	Coolant unit elimination	RVK	25.10.20	Case Study C

Chakan Plant

"The Prime Mover – Towards Excellence"

7

Process Change – Processing time optimization

Case Study 2

Chakan Plant

Kaizen Example

Case Study 3

Chakan Plant

Kaizen Example

Theme : Energy Consumption reduction through IoT at Pretreatment Process

Chakan Plant

Teamwork – Employee Engagement & Monitoring

Chakan Plant

Roof top Solar system – Inhouse captive type

Last three years generation details

Year	Technology (Electrical)	Type of energy	Onsite / Off site	Installed Capacity (MW)	Generation (Million KWH)	% of overall electrical energy	Carbon Emission Reduction (Tones of CO ₂ e / year)	Electric Bill Saving (Rs. Lacs/year)
FY 19-20	Electrical	Solar	Onsite	1.97	2.25	11.63	1906	84.48
FY 20-21	Electrical	Solar	Onsite	1.97	2.10	12.58	1762	78.11
FY 21-22	Electrical	Solar	Onsite	1.97	2.3	14.9	1901	84.66

Shop Roof Top – Solar Plant Phase 1 & 2 Installed Capacity – 1.97 MW

Solar Expansion plan – 2022-2023 Shop Roof Top – - Phase 3- Plan- 818 KW

Additional Examples – Renewable energy utilization.

Idea	Particulars	Photo	Saving Rs. Lacs	Investment Rs. Lacs
Solar energy for power generation	Solar Photo Voltaic Power Plant -20 Kw for horticulture & nursery		32.5 L Kwh/ Yr	24.5 lacs
Use of Solar water Heating System	Solar heater to preheat make up water of washing machine / canteen		3396 Kg/Yr	11 lacs
Use of natural light	Transparent sheets installed in roof for all the shops. Qty- 138 Nos.		0.141 L Kwh/ Yr	1.10 lacs

Waste generation & disposal details

Type of waste generated	Qty. 2019-202	Quantity 2020-2021	Quantity 2021-2022	Disposal method
	MT/Year	MT/Year	MT/Year	
Paint	181.08	164.61	210.49	Disposal through Authorized re Processor
ETP Waste	17.8	17.9	18.6	Disposal through MEPL (MPCB Authorized)
Waste containing oil	79.1	33	79.3	Disposal through MEPL (MPCB Authorized)
Discarded containers	14867 Nos.	16582 Nos.	84082 Nos	Sell to Authorized re processor
Batteries	6.0	4.3	5.6	Disposal through authorized recycler

Details of waste utilization activities

SN	Waste utilisation description	Saving ner Vear	Investment
			(Rs. Lacs)
1	Waste paint sludge sending for reprocess instead of burning in inclinators.	30 T / Year	9.75
2	Waste coolant - Water separation & reuse of water through ETP.	2.2 Lac Liters	2.5
3	Use of ETP treated water for process through RO Plant	4500 KL	13.5

Waste food to Compost

- Input- Waste Food
- Output Organic Manure
- Processing in 24 Hrs.

Future Plan- 2022-2023

Bio-Gas generation from Food waste - Target 80 KG per day

Carbon Footprint Reduction

Approach : To reduce the Emission & Increase the Absorption

Chakan Plant

GHG inventorisation

Kaizen Example

Chakan Plant

GHG inventorisation

CO2 Absorption : Tree Plantation

Overall Result : Carbon Emission

Green Supply Chain Management

Methodology - Implementation of ENCON initiatives at Vendor's end

Energy conservation activities at Vendors

- Our Energy consumption has reduced through various initiative within plant
- We have also initiated Energy conservation & optimization activities at our vendor places
- Sharing our best practices to our vendors for improvement through vendor Pillar & BAVA
- Horizontal deployment of Kaizen at vendor end.

List of Kaizens at vendor.

S.n.	Name of vendor	Product / Process	Per unit En	ergy consumed	% Saving	Inputs / projects provided to the vendor/ associate
			Before	After		
1	Endurance B20 Mahalunge Chakan	Machining Aluminum	8000 KWH/ Day	5800 KWH / Day	28%	Compressed air pipe lines changed used 6 inch line instated of 3 Inch. Use of reservoir at local level.
2	Endurance B20 Mahalunge Chakan	Painting	1200 Units / Day	680 KWH per days	44%	Use of VFD compressor & air booster at paint booth.
3	S.M.Auto Engineering Pvt.Ltd. SMA 310 B	Swing arm/Robotic Cell	30 KWH	17 KWH	57%	Robot servo motor made off when robot is in home position more than 10 Min.
4	M/s FVMT Chakan M/S Varroc, Chakan	Input Shaft thread softening (Pulsar / KTM)	0.0625Kwh/ Component	0.0385 Kwh/ component	38 %	Softening process from Induction heating to Infrared heating
5	Super Auto India Ltd, Pune	HPDC/ Machining	45000 KWH	42500 KWH	5.5%	Solar Installation. For generation of electricity 600KW.(HPDC 4 Machines, VMC-33, CNC36,Leak Testing -11,Assembly -04, Washing Machine-03.)
526	M/s. GB Rubber	Molding	30 KWH	19KWH	37%	Sather insulation sheet used for (m/c 19 ~ 25 jingle. m/c 5 ~ 8 100ton. m/c 27,37 ~ 42. 100-ton bharaj) to avoid heat loss.

Similar ENCON projects 526 are implemented across 37 Vendors. In last one year .Average % improvement achieved is 23%

Learning from CII energy award

Learning & H.D. Status

Sr. No.	Learning topic	What's different in CII Competition	Scope in our plant	Expected saving Millan KWH / Year	Plan	Status
1	Heat Pump	Its results are more gigger than expectations	Washing machines 24 Nos.	0.64	2 Machines completed.	04 Nos planned in 2022-2023
2	BLDC motors.	It was new concept	Paint shop blowers & pumps.	0.32	12 nos. completed.	6 Nos planned in 2022
3	DC Tools for assembly Lines	Unexpected power consumption	Vehicle & engine assembly lines	0.28	52 Nos installed	12 Nos planned in 2022
4	IE05 motors	Further consumption reduction possible	Pump house , Paint shop, Utility equipment's ,	0.088	Paint shop- Completed for 5 Nos	10 Nos planning in process.
	Exp	pected total saving per Year	1	.2 Millan KWH / Year		

Rainwater Harvesting

Rain Harvesting : Ground recharge

Sustainable Development

Rain water Pond No. 1

Rain water Pond No. 3

Rain water Pond No 2

Rain Water Harvesting Ponds Capacity

	Pond No. 1	Pond no 2	Pond no 3
Length meters	74	10	25
Width meters	50.25	10	50
Depth meters	22	60	10
Total volume Cu meters	65000	6000	12500

Rain water pond capacity 83500 Cub M

Category	Category Process +		Throug h Rain	Through Ground Recharge	
Do	Domestic	en	water DAM	Qty.	Tgt. date
Water Lacs KL	1.6	0.80	0.83	2.6	
Total Process + Garden	2.4		3	Comp.	

Annual Consumption

2.4 Lakh Kl

Annual ground Recharge Capacity

1.0 Lakh KL

Chakan Plant

Green Manufacturing awards Paint Shop EHS **CII-TPM Circle** 1st Rank winner of the machinist super competition Gold award shop floor & 1st prize in green winner - 2021 manufacturing - 2022 **Paint Shop** EHS **CII- Jury Challenger award** 1ST Rank winner of the machinist super winner in Challenger Trophy shop floor & 1st prize in green 2022 manufacturing - 2021

Other awards

Aluminum Machine Shop

CII- TPM Circle competition Premium award winner -2021

Vehicle Assembly

CII- Super Challenger award winner in Challenger Trophy -2022

Aluminum Machine Shop

CII- Jury Champion award - Winner Champion of champions 2021

Steel Machine Shop

Gold medal award in productivity improvement & case study manufacturing -2022

Chakan Plant

Thanks

Conserve for Today... Preserve for Tomorrow.... Reserve for future Generation....Also Reduce + Reuse + Recycle Renewable

Thanks !!!